

PART A

Answer ALL the questions

1. What are the generalized co-ordinates in Lagrangian formulation?
2. Define Relative velocity.
3. State the principle of equivalence.
4. What is weightlessness?
5. Calculate the excess pressure inside a small air bubble of radius $10^{-4} \mathrm{~m}$. Given the surface tension of water is $70 \times 10^{-3} \mathrm{Nm}^{-1}$.
6. State Hooke's law of elasticity.
7. What is racing condition in J-K Flip-flop?
8. Define CMRR in an op-amp.
9. Write down the Galilean transformation equation if an object is moving along x-direction with a uniform velocity v in an inertial frame of reference.
10. A rocket was found to be of length 100 m when measured at rest on the earth. If it moves at a constant velocity of $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ relative to the Earth, what will be its length?

PART - B

Answer any FOUR questions
11. Derive expressions for maximum height, time of flight and range of a body projected at an angle with the horizontal direction.
12. a) Derive the relation between g and G. (2)
b) Estimate the mass and density of the earth by using the following data. Radius of the earth $=6371$ $\mathrm{km}, \mathrm{G}=6.66 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ (5.5)
13. Discuss Poiseuille's method for determining the coefficient of viscosity of a liquid.
14. With a neat circuit diagram, explain the working of an op-amp inverting amplifier.
15. Derive Einstein's mass energy equivalence.

PART - C

Answer any FOUR questions
$(4 \times 12.5=50)$
16. Solve Lagrange's equation for i) Simple Pendulum ii) Atwood's machine.
17. a) State Newton's law of gravitation. Write the expression to calculate ' G ' using Boy's method. (2.5+2)
b) Define escape velocity. Show that the escape velocity from the surface of the earth is $11 \mathrm{~km} / \mathrm{s}$.
18. Obtain the relation between the three elastic moduli.
19. a) With a neat circuit diagram explain the construction and working of J-K flip flop.
b) Simplify using K-map. $\quad \mathrm{Y}=\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(1,6,7)$
20. Describe the Michelson -Morley experiment and explain the physical significance of negative results.

